Einsatz von UNICORE in der Hirnforschung
Activities in Neuroscience

- SMHB - Supercomputing and Modeling for the Human Brain
- HBP - Human Brain Project
Polarized Light Imaging (PLI)
The Method

- Developed at Institute for Neuroscience and Medicine, Forschungszentrum Jülich
- Aim: extract the course of single nerve fibers
- Sections of postmortem human brain, each 70\(\mu m\)
- Imaging the sections under linearly polarized light
 - \(\sim 1500\) sections/brain
 - 30\(\times\)25 tiles/section
 - 2048\(\times\)2048 pixels/tile

Institute for Neuroscience and Medicine, Forschungszentrum Jülich
Polarized Light Imaging (PLI)

The Workflow
Hight-throughput brain scans
Jülich/HHU collaboration

- Goal is to create a 3D brain atlas
- Data acquisition
 - Brain section scans (ex vivo)
 (~2000 slices, 500GB per slice → 1PB)
 - MRT scans (in vivo)
- Processing: image registration, calibration, segmentation, etc.
- Image processing using HPC
- Raw data often re-processed (new algorithms, new software versions)
- Additionally: workflows, metadata, sharing with external partners
Part: Human Brain Project
Human Brain Project

- FET Flagship
- \sim10 years, \sim1 Billion EURO
- Coordinated by EPFL (Lausanne)
- Huge, multidisciplinary consortium
 - Neuroscience, medicine, physics, IT, philosophy

- https://www.humanbrainproject.eu
HBP
Platforms

- The *Neuroinformatics* Platform
- The *Brain Simulation* Platform
- The *High Performance Analytics and Computing* Platform
- The *Medical Informatics* Platform
- The *Neuromorphic Computing* Platform
- The *Neurorobotics* Platform
System Access
User questions

Typical SSH access scenario, multiple machines and sites
- What’s my login/password on machine X?
- What LRMS is running on machine X and what are its commands?
- How do I set cores, nodes, memory, etc.?
- Where is my application located?
- Where is my workgroup’s data or mine located?
⇒ Particularly difficult for domain scientists
System Access
Integration

How can I

- ... use multiple, heterogeneous systems seamlessly and securely?
- ... manage my job input data and results?
- ... do the above across system boundaries?
- ... integrate HPC and data resources into applications/portals?
NEST
The Neural Simulation Technology Initiative

NEST Simulator
- simulator for spiking neural network models
- focus on the dynamics, size and structure of neural systems

Source: Senk et. al (2017)
Running **nest**
Without UNICORE

- Login via SSH to JUQUEEN
- Manage working directory, code, and input parameters
- Create and submit a LoadLeveler script

Example

```bash
#job_name = slns_demo
# ...
#@bg_size = 32
#@wall_clock_limit = 00:10:00

module load python3/3.4.2
export TMPDIR=$WORK/tmp
export PYTHONPATH=/homeb/slns/slns007/local/opt/...:
runjob --ranks-per-node 1 --exp-env ... : /bgsys/.../python3 microcircuit.py
```
Running `nest` Using UNICORE

- Complexity is now hidden by UNICORE
- User can use a UNICORE Application “NEST”
- User only needs to invoke application and provide relevant data

Example

```
ApplicationName: NEST,

Parameters: [
    NESTCODE: microcircuit.py, PARAMETERS: parameters.py, ],

Imports: [ ... ],

Resources: { Nodes: 32, Runtime: 1200 }
```
Running nest
Using UNICORE

Admin defines UNICORE Application “NEST” for JUQUEEN

Example

```
<idb:IDBApplication>

  <idb:ApplicationName>NEST</idb:ApplicationName>

  <jsdl:POSIXApplication>
    <jsdl:Executable>runjob --ranks-per-node 1 --exp-env ... : .../python3</jsdl:Executable>
    <jsdl:Argument Type="filename">$NESTCODE?</jsdl:Argument>
    <jsdl:Argument Type="filename"># $PARAMETERS?</jsdl:Argument>
  </jsdl:POSIXApplication>

  <idb:PreCommand>#@environment = COPY_ALL</idb:PreCommand>
  <idb:PreCommand>module load python3/3.4.2</idb:PreCommand>
  <idb:PreCommand>export TMPDIR=$WORK/tmp</idb:PreCommand>
  <idb:PreCommand>export PYTHONPATH=/usr/local/...:$PYTHONPATH</idb:PreCommand>

  <idb:PostCommand>find -name *gdf | xargs zip output.zip</idb:PostCommand>

</idb:IDBApplication>
```
HBP’s HPC Platform

1. authenticate
 returns OIDC token

OIDC server

3.1 validate OIDC

3. OIDC Bearer token
 returns signed SAML

Unity

Unified Portal

2. access REST APIs
 pass OIDC Bearer token

REST API

UNICORE

BSC
HPC site

CINECA
HPC site

CSCS
HPC site

JSC
HPC site

KIT
S3 storage
Single Sign-On

Unity
- Bridges UNICORE to HBP OIDC infrastructure
- Supports REST and Web clients
- Support for SOAP/WS clients (legacy)

User Management
- Users are granted resources (→ review process)
- User IDs and groups are mirrored to HPC sites (LDAP)
- Access via UNICORE is configured automatically
The HBP Collaboratory collects tools from the HBP Platforms in one place and allows you to organize them into your own collaborative workspace or collab.
The Collaboratory
Applications

- Applications can be added to *collabs*
- One such application is the UNICORE Storage Browser

```
<table>
<thead>
<tr>
<th>Navigation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Overview</td>
</tr>
<tr>
<td>Team</td>
</tr>
<tr>
<td>Storage</td>
</tr>
<tr>
<td>Settings</td>
</tr>
<tr>
<td>Task 2.2</td>
</tr>
<tr>
<td>My Profile</td>
</tr>
<tr>
<td>HPC Storage JURECA</td>
</tr>
<tr>
<td>HPC Storage KIT</td>
</tr>
<tr>
<td>Job Manager</td>
</tr>
</tbody>
</table>

```

```
<table>
<thead>
<tr>
<th>Workspace</th>
<th>HPC Storage JURECA</th>
</tr>
</thead>
<tbody>
<tr>
<td>.cache</td>
<td>Name</td>
</tr>
<tr>
<td>-.config</td>
<td>Content</td>
</tr>
<tr>
<td>-.ssh</td>
<td>Created on</td>
</tr>
<tr>
<td>- 2012-06-04_Private_Cloud.pdf.metadata</td>
<td>Created by</td>
</tr>
<tr>
<td>.bashrc</td>
<td></td>
</tr>
<tr>
<td>.bashrc</td>
<td></td>
</tr>
<tr>
<td>.bashrc</td>
<td></td>
</tr>
<tr>
<td>.bashrc</td>
<td></td>
</tr>
<tr>
<td>.profile</td>
<td></td>
</tr>
<tr>
<td>.sh_history</td>
<td></td>
</tr>
<tr>
<td>.Xauthority</td>
<td></td>
</tr>
</tbody>
</table>

```

Collaboration
1 member - 1 available

This is the very beginning of the current collab’s chat. Start using it to collaborate with your team!
Part: Neurorobotics
Current Goals

Neurorobotics

<table>
<thead>
<tr>
<th>Workspace</th>
<th>Example experiments</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Husky Braitenberg experiment in the SpaceBotCup 2013 arena</td>
</tr>
<tr>
<td></td>
<td>Husky Braitenberg experiment with automatically switching screens</td>
</tr>
<tr>
<td></td>
<td>iCub Visual Tracking experiment</td>
</tr>
</tbody>
</table>

- **Husky Braitenberg experiment in the SpaceBotCup 2013 arena**

 This experiment loads the Husky robot from Clearpath Robotics and the arena from the SpaceBotCup 2013. If the user starts the experiment, the Braitenberg vehicle network is executed and the robot will...

- **Husky Braitenberg experiment with automatically switching screens**

 This experiment is similar to the Husky Braitenberg one (Husky robot detecting red colour and driving towards it). In this experiment the right screen is turned red automatically after...

- **iCub Visual Tracking experiment**

 In this experiment the iCub robot performs a Visual Tracking task in the virtual room environment.

 Timeout: 00:00:14:00
 Backend availability: 13 / 14
 Cluster availability: 6 / 34

Screenshot of HBP SP10 NRP Example Experiments
NRP Architecture

Axel von Arnim, HBP SP10
NRP Web Cockpit

Screenshot of HBP SP10 NRP Husky Braitenberg Experiment
Requirements

- Network tunnel into HPC resources
- Forwarding VNC connections
- Low latency
- Bandwidth?
Architecture
Options

- Many hops
- Higher latency expected
- Implementation difficult

- Fewer hops
- Proven components
- Easier implementation

Own
Implementation

Tunnel Setup

- Same flow as for ordinary UFTP connections
- Firewall friendly
Tunnel Setup
UCC

- New create-tunnel command
- Parameter \(-L\) resembling SSH syntax
- Source Address can be set via \(-i\)
 - Important for NATing or multiple interfaces
- Example:

  ```
  $ ucc run iperf.u -a
  720208ac-7015-49c3-b0c1-9e047b4287be.job
  $ ucc create-tunnel 720208ac-*.job -L 5001:localhost:5001
  Listening on localhost:5001
  ```
Results
Some (superficial) measurements

Throughput/Bandwidth
- Measured using iperf (submitted as job)
- No noticeable difference to native performance or SSH tunnels

Latency
- Usable for VNC, no noticeable lag
Results
IPerf

- 6 consecutive tests, 2 each using UFTP, SSH, and direct connections
- Server side log

--
Server listening on TCP port 5001
TCP window size: 85.3 KByte (default)
--
[5] local 127.0.0.1 port 5001 connected with 127.0.0.1 port 41246
[ID] Interval Transfer Bandwidth
[5] 0.0-10.8 sec 120 MBytes 93.5 Mbits/sec
[7] local 127.0.0.1 port 5001 connected with 127.0.0.1 port 41252
[7] 0.0-10.7 sec 119 MBytes 93.4 Mbits/sec
[5] local 127.0.0.1 port 5001 connected with 127.0.0.1 port 41253
[5] 0.0-11.0 sec 119 MBytes 91.3 Mbits/sec
[7] local 127.0.0.1 port 5001 connected with 127.0.0.1 port 41254
[7] 0.0-11.0 sec 123 MBytes 93.5 Mbits/sec
[5] local 192.168.16.142 port 5001 connected with 134.94.168.32 port 52196
[5] 0.0-10.1 sec 112 MBytes 93.6 Mbits/sec
[7] local 192.168.16.142 port 5001 connected with 134.94.168.32 port 52200
[7] 0.0-10.1 sec 112 MBytes 93.6 Mbits/sec
Open Issues

The small print

- Need to deploy full NRP scenario including VirtualGL over VNC
- Currently only a single connection possible after tunnel setup
- Tunnel tear-down needs to be implemented
- It is not as straightforward to implement SSH tunnels as it may seem
- More measurements under various conditions
 - Better abstraction is needed
Summary

- Neuroscience involvement
 - SMHB
 - HBP
- Variety of services for supporting neuroscience
- New use cases lead to new features