Systems & Programming Models at the High Performance Computing Center Stuttgart

Rainer Keller, HLRS
Context: Organizational

- HLRS is one of the three national supercomputing centers in Germany.
- The national supercomputing centers are working together in the Gauss Centre for Supercomputing GCS.
- GCS is the means to contribute to the Partnership for Advanced Computing in Europe (PRACE).
- All centers work within PRACE towards a European HPC Infrastructure and perform research with all PRACE partners towards Exascale computing.
- Additionally HLRS is responsible within PRACE and GCS for the support of the engineering community and the definition of the industrial offer.
Context: Main User’s Research Projects

- Aeroacoustics
- Aerodynamics
- Astrophysics
- Bioinformatics
- Combustion
- Fluid-Structure Interaction
- Helicopter Aerodynamics
- Meteorology
- Medical Imaging
- Nanotechnology
- Solid State Physics
- Turbo Machinery
- Turbulence Phenomena
Context: Systems in Stuttgart

- Large variety of HPC systems offered:

Clusters, e.g.:
- Laki 62 TF
- BW-Grid 14 TF

New architectures, e.g.:
- Cluster of Cell (2008)
- MD Grape (2007)
Context: The petaGCS Project (Phase1)

- The petaGCS project is a BMBF funded project covering the national share for investment and operation of national supercomputing in Germany
 - Covers currently Phase1 of all GCS centers
 - Next phases will be covered in a similar way
 - 50% co-funding is provided by the regional governments

For HLRS: the Ministry of Science, Research and the Arts Baden-Württemberg
Phase 1 Step 1: Hermit 1
3rd PRACE TIER-0 System
Programming models research

- Projects at HLRS regarding programming models:

 User centric:
 - PRACE
 - DEISA
 - HPC-Europa2

 Tool centric:
 - TEXT
 - CRESTA
 - Open MPI

 Application centric:
 - IMEMO
 - SFB716 D.2
 - APOS

 Accelerator- centric:
 - H4H
 - Insilico project
 - HMI-Tec

 Programming model:
 - LarKC
 - PRACE-1IP
 - ECOUSS
• Application Performance Optimisation and Scalability
• EU-funded STREP-Project in FP7-2011-EU-Russia
• Just started, runs for 24 months

• EU Partners:
 – EPCC, UK (Coordinator)
 – CAPS entreprise, France
 – Uniwersytet Warszawski, Poland
 – TOTAL, France
 – HLRS, Germany

• Russian Partners:
 – Kurchatov Institute, Moscow
 – Ugra Research Insitute, Khanty-Mansiysk
 – Institute for Mathematical Modelling, Moscow
 – Moscow Physics Technical Institute, Moscow

Contact: Colin Glass
• Porting of Codes from different scientific domains:
 – CFD, Magneto-hydrodynamics, molecular dynamics (work with open source GS2, Open Foam, LS1 codes)
 – Onto different target architectures (Multi-core, GPU)

• EU Contribution:
 WP1: Identification of codes
 WP2: Porting to Multicore
 WP3: Porting to GPGPU
 WP4: Prototype Tools
 WP5: Dissemination
GPU: Industrial Collaboration: HMI-Tec

• Parallelize KI Neuro-Sorter using CUDA

Speedup: Training phase
Pattern:
- 3766 words
- 3766 input neurons
- Vary # inner neurons

Data: Zaheer Ahmed
Programming Model: ECOUSS

- “Effiziente und offene Compiler Umgebung für Semantisch annotierte parallele Simulationen”
- BMBF-funded project within the HPC-Initiative
- Partners:
 - HLRS (Coordinator: Stefan Wesner)
 - Universität des Saarlandes, Intel Visual Computing Insittu
 - Deutsches Forschungszentrum für Künstliche Intelligenz
 - Universität Karlsruhe
 - Cray Computer Deutschland

Top-down: Use code annotations, to describe programmers intent:
#pragma ivdep, #pragma no_side_effect, attribute(hot)

Bottom-up: Improve hardware description for more efficient mapping:
number of cores per socket, memory-channels
Tool (and Application) centric: TEXT 1/3

- Towards EXascale ApplicatTions (TEXT)
- EU-funded CP & CSA in FP7-Infrastructures-2010-2
- Partners:
 - BSC, Spain
 - HLRS, Germany
 - FZJ, Germany
 - EPCC, UK
 - FORTH, Greece
 - University of Manchester, UK
 - Universite de Pau et des Pays de L’Adour, France
 - Universitat Jaume I de Castellon, Spain
 - IBM Research Zürich, Switzerland

Centered around the StarSS programming model by BSC:

```c
#pragma css task input(v1, v2, len) output(v3)
void vadd (float *v1, float *v2, float *v3, int len)
```
Tool (and Application) centric: TEXT 2/3

• Parallelization using SmpSS on the:
 – BEST / LBC Lattice Boltzmann codes
 Jose Gracia
 – LS1-Mardyn MD code
 Christoph Niethammer

• Develop a small testsuite to find implementation bugs and tools capabilities (valgrind-like errors)

• Develop debugger & techniques of threaded debugging
• Ease thread programming with graphical debugger:

Contact: Steffen Brinkmann
Tools and Parallel Programming support

- Cray XE6: a nice machine for PGAS-like languages
- The main parallel programming model: MPI and Hybrid MPI+Some Thread-Parallelism

- HLRS & Cray will provide software stack:
 - Set of compilers: Cray, PGI, GNU & Intel
 - Eclipse
 - Allinea DDT
 - CrayPat & Apprentice2
 - Vampir / VampirServer
 - Scalasca
 - Roguewave Threadspotter
• Parallel debugger (up 200k cores @ ORNL/ Jaguar)
Performance Analysis: Vampir

Process 0, Values of Counter "PAPI_FP_OPS" over Time

0 M

Process 0, Values of Counter "PAPI_FPU_IDL" over Time

60 G

30 G

78.925 s
Performance Analysis: ThreadSpotter

- Analysis of RogueWave Threadspotter
- Memory-access pattern analysis for cache-optimization
Thank You very much!

Any Questions?